

on Facu

Serving Size 1 Cup (28g) Serving Per Container about 3

U.S. Food and Drug Administration Protecting and Promoting Public Health

Determination of Certified Color Additives in Food Products

Bhakti Petigara Harp, PhD Enio Miranda-Bermudez, MS Office of Cosmetics and Colors Food and Drug Administration June 5, 2014

Outline

- Background
 - 2011 Food Advisory Committee recommendations
- Analytical method for FD&C color additives
- Sampling procedure for exposure assessment
- Contract laboratory analyses
- Method for estimating exposure

Background

- 2007 Southampton study
 - Children's consumption of color additives and possible adverse behavioral effects
 - Sunset Yellow (FD&C Yellow No. 6), Tartrazine (FD&C Yellow No. 5), Ponceau 4R, Carmoisine, Quinoline Yellow (D&C Yellow No. 10), Allura Red AC (FD&C Red No. 40)
 - Tested mixtures of color additives plus sodium benzoate
- 2008 CSPI citizen petition
 - Requests ban of eight certified color additives used in foods
 - Requests warning labels on foods containing these color additives

Background

- Certified color additives permitted for general use in food products
 - FD&C Blue No. 1
 - FD&C Blue No. 2
 - FD&C Green No. 3
 - FD&C Red No. 3
 - FD&C Red No. 40*
 - FD&C Yellow No. 5*
 - FD&C Yellow No. 6*

*These three included in Southampton study

Background

- In March 2011, FDA convened a Food Advisory Committee (FAC) to
 - consider available relevant data on the possible association between children's consumption of FD&C color additives in food and adverse behavioral effects
 - advise FDA on what action, if any, is warranted to ensure the safety of these color additives

FAC conclusions

- Causal link between children's consumption of FD&C color additives and adverse behavioral effects not established by available data
- Additional label information (i.e., warning label) unnecessary to ensure safe use of FD&C color additives

FAC recommendations

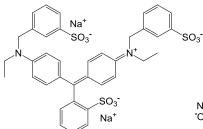
- Conduct additional research
 - Potential developmental and behavioral effects in children from exposure to FD&C color additives
- Perform comprehensive exposure assessment for FD&C color additives in foods
 - Focus on foods marketed to children

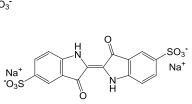
FDA's initial response to FAC recommendations

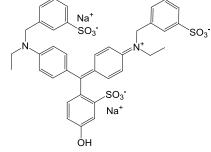
- New liquid chromatography method
 - Quantitative determination of FD&C color additives in various food matrices
 - Published in Journal of Agricultural and Food Chemistry (*J. Agric. Food Chem.* 2013, 61, 3726–3736)

Liquid chromatography method

- Chemical structures
- Food matrices used to validate method
- Challenges
- Extraction procedure
- Analytical method
- Chromatograms

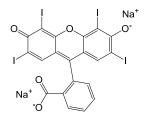


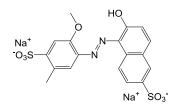

U.S. Food and Drug Administration Protecting and Promoting Public Health www.fda.gov


on Facu

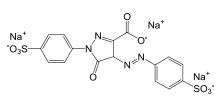
Serving Size 1 Cup (28g) Serving Per Container about 3

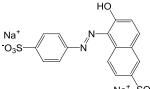
Chemical structures




FD&C Blue No. 1

FD&C Blue No. 2


FD&C Green No. 3

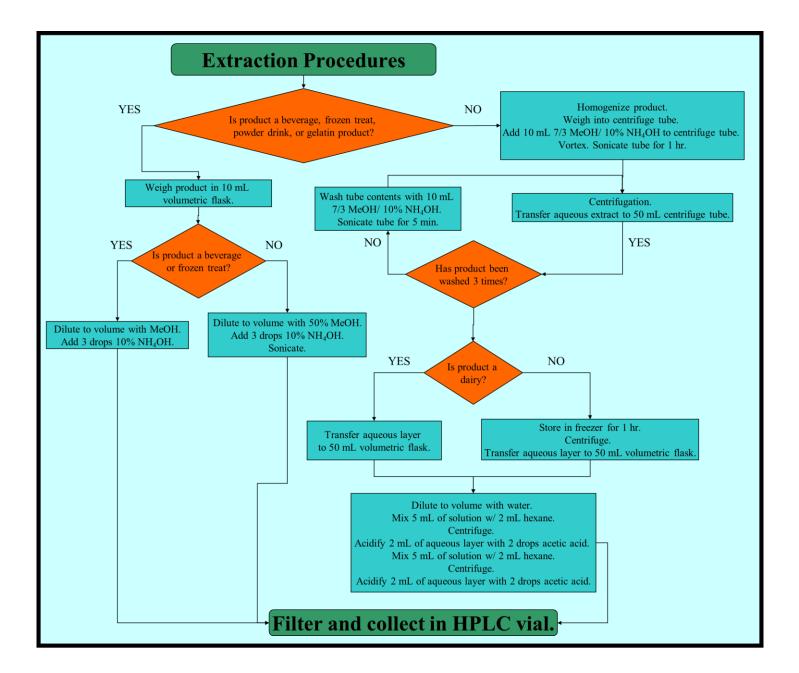

FD&C Red No. 3

FD&C Red No. 40

FD&C Yellow No. 5

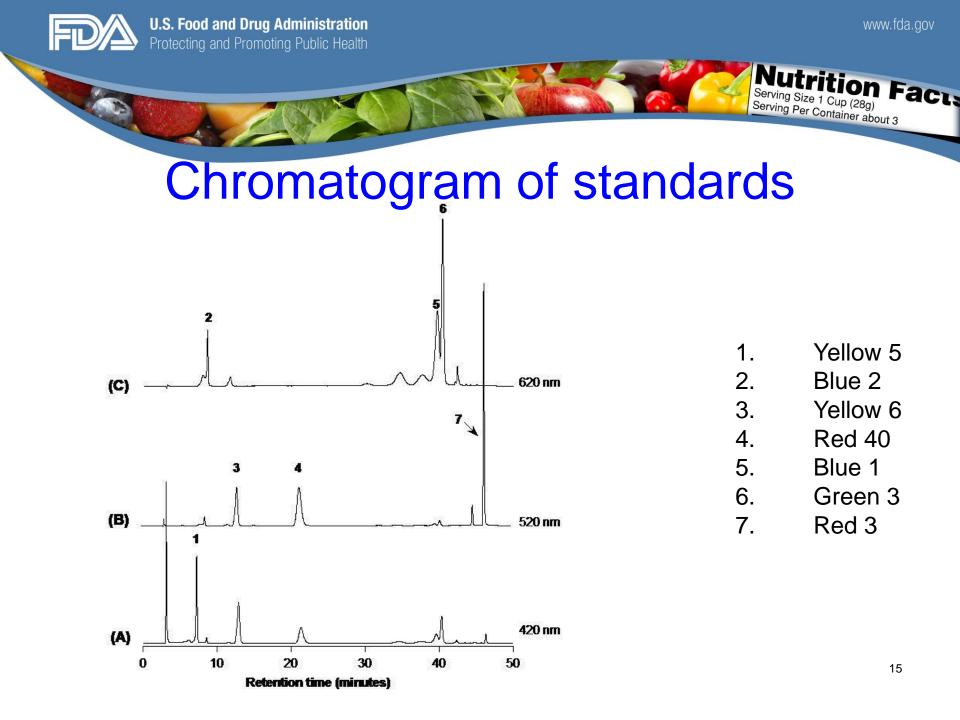
Na⁺ SO₃⁻

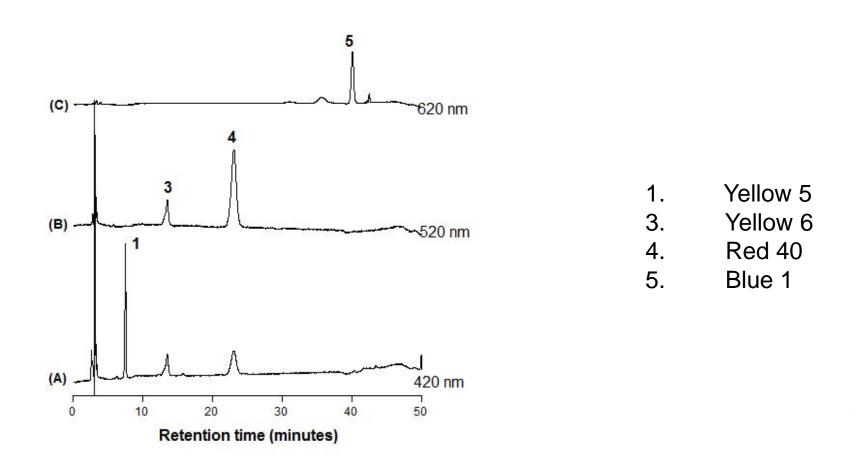
Food matrix categories


- Beverages
 - Soda
 - Powdered drinks
 - Popsicles
- Dairy
 - Milk
 - Ice cream
 - Yogurt
- Sauces
 - Salad dressing
 - Jelly

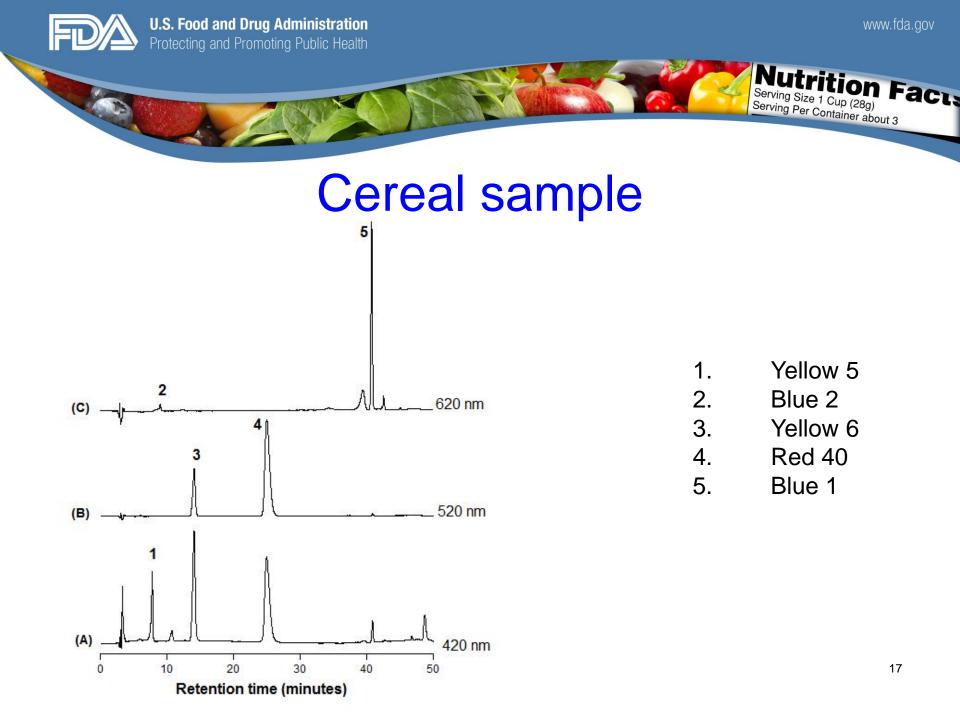
- Sweets and spices
 - Chocolate
 - Gummies
 - Decorations
 - Seasonings
- Baked goods
 - Cookies
 - Cereal
 - Chips

Challenges


- Different extraction methods needed to be developed for different food matrices
 - Candies and beverages
 - More complex foods (dairy products and baked goods)
- Stability of FD&C Blue No. 2
 - Poor stability in light and under basic conditions
- Recovery of FD&C Red No.3
 - Adheres to food matrices and filter under neutral or acidic conditions

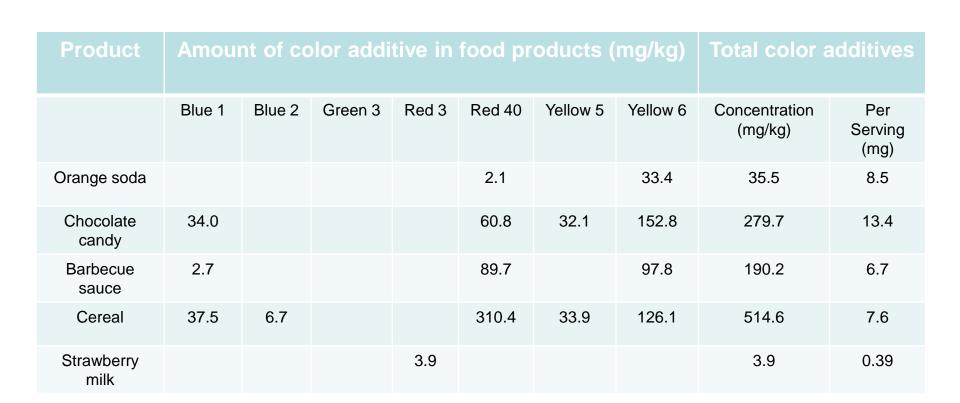

Analytical method

- Color additives extracted and analyzed using liquid chromatography (LC) with photodiode array (PDA) detection
 - Gradient elution using C18 column
 - Ammonium acetate in water and methanol
- Calibration curves used for quantitation



Iced tea sample

16



1000

U.S. Food and Drug Administration Protecting and Promoting Public Health

Nutrition Facu

Serving Size 1 Cup (28g) Serving Per Container about 3

Results highlights

- FDA laboratory survey of 44 foods
 - "Sprinkles" contained highest levels of color additives
- Most common color additives found
 - FD&C Red No. 40, FD&C Blue No. 1, FD&C Yellow 5, and FD&C Yellow No. 6
- Less common color additives found
 - FD&C Blue No. 2, FD&C Green No. 3, and FD&C Red No. 3

Steps for obtaining analytical data for exposure assessment

- Development and validation of LC method
- Selection of contract laboratory
- Identification of foods containing color additives
- Contract laboratory analyses
- Evaluation of contract laboratory results

Steps for identifying foods containing FD&C color additives and determining their levels

- LabelBase by FoodEssential with product label data provided by Gladson and Mintel
- Product label survey
 - Surveyed local grocery stores in the greater Washington
 DC area, as well as label information from online sources
 - June 2012 to December 2013
- Analytical data to determine levels
- Market share information

2012-2013 product label survey

- >7300 products surveyed covering 60+ food categories
 - Comprehensive survey of product categories previously or currently known to contain FD&C color additives
- Survey is a snapshot in time
- Exposure reflects the products that were in the marketplace at the time of the survey

tion Facu

Serving Size 1 Cup (28g) Serving Per Container about 3

Examples of food categories

- Baby Food
- Baking Chips
- Baking Mixes
- Beverages (e.g., energy drinks, soda, juice drinks)
- Bread
- Brownies
- Cakes and Cupcakes
- Candy (e.g., hard, soft, chocolate)
- Cereals
- Cereal Bars
- Cheese Spreads and Cream Cheese
- Chewing Gum
- Condiments
- Cookies
- Covered Nuts
- Crackers
- Decorating Items (e.g., jimmies, sugar crystals)
- Dessert Toppings
- Dips
- Drink Mixers
- Flavored Milk
- Fillings

- Frosting and Icing
- Fruit in a Cup
- Frozen Desserts
- Frozen Yogurt
- Fruit Snacks
- Gelatin Dessert
- Glazes
- Granola Bars
- Ice Cream Bars, Cones, and Sandwiches
- Ice Cream
- Jams and Jellies
- Marshmallows and Marshmallow Topping
- Meal Replacements
- Pie Crust
- Popsicles, Fruit Bars, Italian Ices
- Prepared Meals
- Pudding
- Refrigerated Cookie Dough
- Savory Snacks
- Sherbet
- Soup
- Toaster Pastries
- Trail Mix
- Yogurt

Label survey observations

- Products are continually being reformulated to remove FD&C color additives
 - One brand of macaroni and cheese removed FD&C Yellow No. 5 and FD&C Yellow No. 6 in 2013 in products marketed to children
 - A brand of potato bread has removed FD&C Yellow No. 5 and FD&C Yellow No. 6 since December 2013
- Based on the label survey, over 580 representative products were chosen for analysis of FD&C color additives
 - Emphasis was on products marketed to children

Contract laboratory analyses of food products

www.fda.gov

on Facu

Serving Size 1 Cup (28g) Serving Per Container about 3

- Contract laboratory used FDA's method to determine levels of FD&C color additives in food products
- Analytical data obtained for over 580
 representative products
 - Prior to analyses, all products were prepared as they would be consumed
 - Results were provided in mg/kg
 - Limit of detection (LOD) for the method was 1 mg/kg
 - Photos of product labels, including the ingredient lists were provided

- Three different population groups were chosen
 - U.S. population, aged 2+ years
 - Children, 2-5 years
 - Teenage boys, aged 13-18 years
- Children and teenage boys were chosen because they are typically high consumers of foods that would be expected to contain FD&C color additives

- Exposure is estimated on an "eaters-only" basis at the mean and 90th percentile
 - "Eaters-only" means that individuals included in the estimate consumed one or more of the foods identified as containing an FD&C color additive over the survey period
 - The 90th percentile represents the high intake consumers of a given food

- 2-day food consumption data from the 2007-2010 National Health and Nutrition Examination Survey (NHANES) were used
- Over 60 food categories where products contained at least one of the FD&C color additives were identified
- >300 food codes from the NHANES survey were assigned across these food categories for each FD&C color additive
 - NHANES food codes represent either a specific product (e.g., Peanut M&Ms) or a general product type (e.g., soft drink, fruit flavored, caffeine containing)
- Levels of each FD&C color additive found in the analyzed ²⁸ food were assigned to the appropriate food code

- Market share data were used for certain NHANES food codes where there was a broad range of FD&C levels among different brands for a FD&C color additive for a given food code
- Three different exposure scenarios were performed based on:
 - The lowest FD&C level for a given color for each food code
 - The highest FD&C level for a given color for each food code
 - A typical FD&C level for a given color for each food code

FAC Follow-Up

- FDA has collected data on amounts of FD&C color additives used in food products
 - These data are being used to estimate dietary exposure for the U.S. population and various population subgroups, including children
- FDA is reassessing safety studies conducted on FD&C color additives that are available in its files
- FDA will determine whether additional safety studies are needed
- Results from the exposure estimate will be presented at the American Chemical Society (ACS) annual meeting in August