

Company overview

Incorporated 2017 and acquired core IP

- \$11.2M venture capital financing
- Grant funding: Gates Foundation, US Dept. of Energy, NIH, USDA
- Active academic collaborations: UW, Tufts, NREL, Wadsworth Center, OSU, ASU

2018 established wholly owned subsidiary to hold colors business

Preserve flexibility for future capital transactions and transaction tax planning

cGMP/FSSC 22000 pre-audit complete; final certification audit pending

Company overview

Incorporated 2017 and acquired core IP

- \$11.2M venture capital financing
- Grant funding: Gates Foundation, US Dept. of Energy, NIH, USDA
- Active academic collaborations: UW, Tufts, NREL, Wadsworth Center, OSU, ASU

2018 established wholly owned subsidiary to hold colors business

Preserve flexibility for future capital transactions and transaction tax planning

cGMP/FSSC 22000 pre-audit complete; final certification audit pending

Two key technology advantages:

- 1. Fully cGMP controlled, US-based indoor production and processing
- 2. Biotechnology advantage with zero non-native DNA

Indoor Production

Standing on the shoulders of giants

Production and extraction technology pedigree:

- Recent decade of intense biofuels industry research into microalgae cultivation and extraction technologies
- Huge recent advances in LED technology and related supply chain expertise
- 3. Indoor cultivation/aquaculture biology knowhow
- 4. Washington hydro

Production/extraction technology benefits

Indoor production

- Total seasonality and product consistency control
- No risk of toxic blooms, pesticide over-spray, bird or insect contamination
- No outdoor ponds avoids evaporative water loss and associated environmental issues
- No need for large scale agricultural water negotiations to for future expansion
- Top-to-bottom cGMP controls enable continuous yield improvement and lean manufacturing

All US production

- Complete confidence no adulteration
- Easy food safety audits under FSMA with domestic supplier
- No risk of exchange rate, tariff or geopolitical supply chain disruption

Making a truer blue

Market standard: a blend of blue and cyan

RioBlue is true blue

% composition of purified, pre-formulation extract (RioBlue™ sample)

Color space mapping of RioBlue™ compared to competitor products

Visible light transmission spectra of RioBlue™ and competitor products converted to CIE 1931 XYZ color space

- Most standard phycocyanin products cluster in the teal-blue region
- One competitor product ("C") shows an unusual composition and anomalously high color value for the cPC concentration
- RioBlue™ has a higher cPC/aPC ratio compared with competitors and demonstrates a stronger blue color

Biotechnology

Lumen's Spirulina extract: both better and cheaper

Phycobilisome

Standard spirulina

Comparison of commercially available spirulina extracts

Temperature Stability

pH stability

Other colors

- Other pigments are naturally abundant in Spirulina
 - E.g. allophycocyanin

Modifying phycocyanin to yield entirely new colors

Lumen Bio Data

Published results in a model system in a related field

A computationally designed and synthetically constructed antibody

Safety/toxicology evaluation for Phase 1 human trials

ICH guidelines:

- 1 animal study (mouse okay)
- No non-human primate studies
- No immune histochemistry
- Drivers:
 - Macromolecule orally delivered, non-human target
 - No articulable theory of toxicity

Safety/toxicology evaluation for Phase 1 human trials

ICH guidelines:

- 1 animal study (mouse okay)
- No non-human primate studies
- No immune histochemistry
- Drivers:
 - Macromolecule orally delivered, non-human target
 - No articulable theory of toxicity
- Current clinical practice:
 - Direct to Phase 2b clinical trial
 - Leading study: Ph2b in severely diuretic infants (rotavirus VHH)
 - Johns Hopkins: "Why would you waste time on a Phase 1 trial?"

What are biologics?

	شست	of the state of th		Sales
1x	19x	105x	122x	170x
Aspirin 0.18kDa	calcitonin ~3.5 kDa	filgrastim ~19 kDa	somatropin ~22 kDa	epoetin ~30 kDa

We can.

Should we?